

Girraween High School

2022 Year 12 Mathematics Advanced

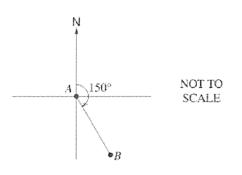
General Instructions	• Reading Time - 10 minutes		
	• Working Time - 3 hours		
	• Write using black pen only		
	• All questions are compulsory		
	• Calculators approved by NESA may be used		
	• Mathematics reference sheets are provided		
	\bullet Marks may be deducted for careless or badly arranged work		
Total Marks:	Section I - 10 marks (pages 1-3)		
100	• Attempt questions 1-10, color the bubble next to the letter corresponding to the correct response on your paper		
	• Allow about 15 minutes for this section		
	Section II - 90 marks (pages 5-20)		
	• Attempt questions 11-34		
	• Allow about 2 hours and 45 minutes for this section		

Year 12 Trial HSC Examination - Mathematics 2022 Multiple Choice Answer Sheet

Stu	dent N	lumber:			Teacher:			
Select compl		ernative A, B.	C or D that be	st answers i	the question. F	ill in t	he response of	oval
Samp	le:	2+4=	(A) 2 A ()	(B) 6 B 🔴	(C) 8 C ()		(D) 9 D 🔿	
~	think y nswer.	ou have mad	e a mistake, pu	t a cross thr	ough the inco	rect a	nswer and fil	l in the
110.00 68	******		Α 🔘	в 💢	cO		D 🔿	
			nd have crosse					
maica	te the c	Unect answer	by writing the		r and chawing over	211 211	ow as follow:	.
			A	в 💆	сО		DO	
							•	
1.	А	0	В	0	С	0	D	0
2.	А	0	В	0	С	0	D	0
3.	А	0	В	0	С	0	D	0
4.	А	0	В	0	С	0	D	0
5.	А	0	В	0	С	0	D	0
6.	А	0	В	0	С	0	D	0
7.	А	0	В	0	С	0	D	0
8.	А	0	В	0	С	0	D	0
9.	А	0	В	0	С	0	D	0
10.	А	0	В	0	С	0	D	0

Question 1 (1 mark)

The midpoint of the line joining (0, -5) to (d, 0) is


A.
$$\left(\frac{d-5}{2}, 0\right)$$
 B. $\left(0, \frac{5-d}{2}\right)$ C. $\left(\frac{d}{2}, \frac{-5}{2}\right)$ D. $\left(\frac{5+d}{2}, 0\right)$

Question 2 (1 mark)

Let f(x) and g(x) be functions such that f(2) = 5, f(3) = 4, g(2) = 5, g(3) = 2 and g(4) = 1. The value of f(g(3)) is: A. 1 B. 2 C. 4 D. 5

Question 3 (1 mark)

The plane flies on a bearing of 150° from A to B.

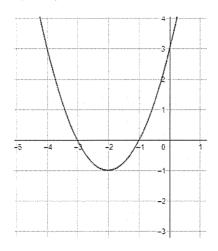
What is the bearing of A from B?

A. 30° B. 150° C. 210° D. 33

Question 4 (1 mark)

A discrete random variable X has a probability distribution as shown:

decidence and an and a second	X	0	1	2	3
	$\Pr(X = x)$	0.4	0.2	0.3	0.1


The median of X is:

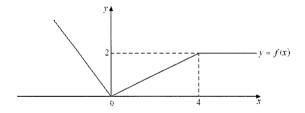
ø

A. 0 B. 1 C. 1.1 D.	. 2	
---------------------	-----	--

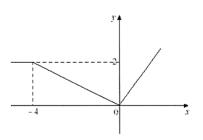
Question 5 (1 mark)

The graph of the curve $y = (x + a)^2 + b$ is shown below:

What are the values of a and b?


A. a = 2, b = 1 B. a = -2, b = -1 C. a = -2, b = 1 D. a = 2, b = -1

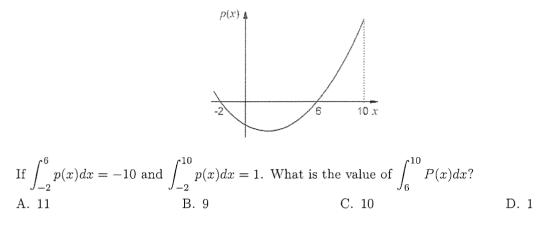
Question 6 (1 mark)


Let $a = e^x$ which	expression is equal to log_e	$(a^2)?$	
A. e^{2x}	B. e^{x^2}	C. $2x$	D. x^2

Question 7 (1 mark)

The graph of y = f(x) is shown below:

The graph is transformed to give this graph:

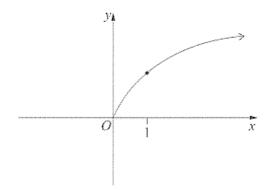


Which of these expressions is the equation of the new graph?

A. f(x) - 1 B. f(-x) C. f(x) + 2 D. -f(x)

Question 8 (1 mark)

The graph shows the function p(x).



Question 9 (1 mark)

Which inequality defines the domain of the function $f(x) = \frac{1}{\sqrt{x+3}}$ A. x > -3B. $x \ge -3$ C. x < -3D. $x \le -3$

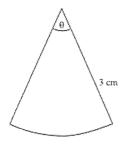
Question 10 (1 mark)

The graph of y = f(x) is shown:

Which of the following inequalities is correct?

A. f''(1) < 0 < f'(1) < f(1)B. f''(1) < 0 < f(1) < f'(1)C. 0 < f''(1) < f'(1) < f(1)D. 0 < f''(1) < f(1) < f'(1) Mathematics Advanced Section II Answer Booklet

90 Marks Attempt Questions 11-34 Allow about 2 hours and 45 minutes for this section


Instructions

- Answer the questions in the spaces provided.
- Your responses should include relevant mathematics reasoning and/ or calculations

Please turn over

Question 11 (3 marks)	
Solve $3^{2x-1} = 5^x$, giving your answer to 2 d.p.	
•••••••••••••••••••••••••••••••••••••••	
Question 12 (3 marks)	
(a) Differentiate $3 + \sin 2x$.	[1]
(b) Hence, or otherwise, find $\int \frac{\cos 2x}{3 + \sin 2x} dx$	[2]

Question 13 (5 marks)

(a) A silver pendant is made in the form of a sector of a circle as shown above. If the [2]radius is 3 cm, what is the angle θ , in radians so that the area is $6 cm^2$? (b) Another pendant has the same total perimeter, but with radius 2.5 cm. What is [3] the required angle θ , in radians? Question 14 (2 marks) Given that $\int_0^6 (x+k)dx = 30$, and k is a constant, find the value of k.

Question 15 (7 marks)

Consider the function $f(x) = x^3 - 3x^2$

(a) Find the coordinates of the stationary points of the curve y = f(x) and determine [3] their nature.

.....

(b) Sketch the curve showing where it meets the axes. Label all its important features. You do not need to find points of inflexion.

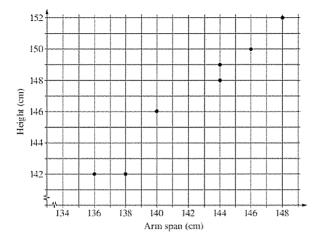
[2]

(c) Find the values of x for which the curve $y = f(x)$ is concave up.
Question 16 (2 marks) Evaluate $\int_{e}^{e^3} \frac{5}{x} dx$
Evaluate $\int_{e} \frac{-dx}{x}$
•••••
·····
Question 17 (2 marks)
Differentiate $y = x^2 log_e x$

[2]

8

Question 18 (4 marks)

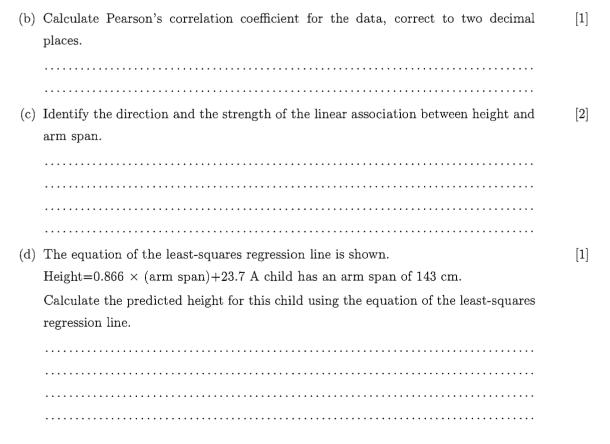

Class 7C has 18 boys and 12 girls in it and 7K is made up of 12 boys and 16 girls. If you pick one of their class and a pupil from it at random, what is the probability that you select

(a)) a girl?	[2]
(b)	What is the probability that the student is from 7C given a girl is selected?	[2]

[0]

Question 19 (5 marks)

A set of bivariate data is collected by measuring the height and arm span of seven children. The graph shows a scatterplot of these measurements.

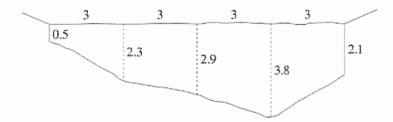


(a) Complete the table below.

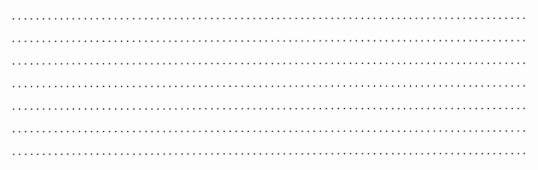
 Arm
 Span

 (cm)
 Height

 (cm)
 Image: Comparison of the system of the system



[1]


Question 20 (2 marks) Prove that $\frac{1 - \sin^2 x \cos^2 x}{\sin^2 x} = \cot^2 x + \sin^2 x$

Question 21 (3 marks)

At a certain location a river is 12 metres wide. At this location the depth of the river, in metres, has been measured at 3 metre intervals. The cross-section is shown below.

Use the Trapeziodal rule with the five depth measurements to calculate the approximate area of the cross-section.

Question 22 (7 marks)

The velocity of a particle moving along the x-axis is given by:

$$\dot{x} = 8 - 8e^{-2t}$$

where t is the time in seconds and x is the displacement in metres.

(a)	Show that the particle is initially at rest.	[1]
(b)	Show that the acceleration of the particle is always positive.	[1]
(c)	Explain why the particle is moving in the positive direction for all $t > 0$.	[2]
(d)	As $t \to \infty$, the velocity of the particle approaches a constant. Find the value of the constant.	[1]
(e)	Sketch the graph of the particle's velocity as a function of time.	[2]

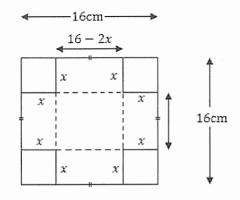
Question 23 (4 marks)

The circle $x^2 + 6x + y^2 + 2y = -6$ is reflected in the y-axis.Sketch the reflected circle, showing the coordinates of the centre and the radius.

Question 24 (2 marks)

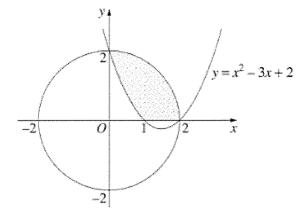
A town planning committee notes that the rate of growth of the town's population since 1985 has followed the formula: $\frac{dp}{dt} = (1500 + 200t)$ people per year where t is the number of years since 1st January 1985. On 1st January 1992 the population was 25 000. Find the formula for the city's population from 1985 onwards.

Question	25	(4 marks)	
----------	-----------	------------	--

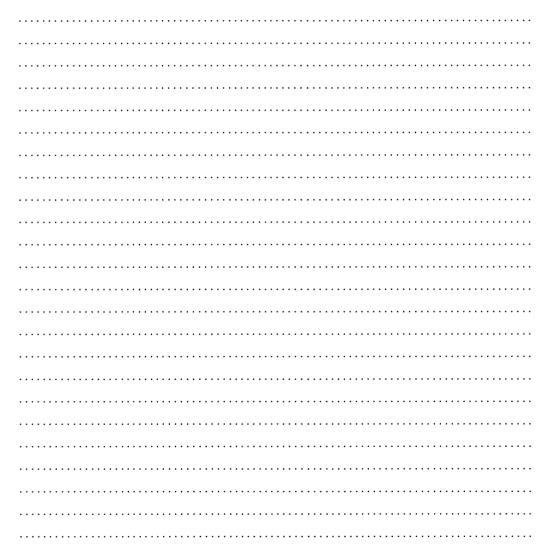

Solve $10\sin^2 x - 4\sin x = 5$ for $0^o \le x \le 360^o$.

Question 26 (4 marks)

(a)	Differentiate $log_e(cos x)$ with respect to x.	[2]
	π	
(b)	Hence, or otherwise, evaluate $\int_0^{\frac{\pi}{4}} \tan x dx$	[2]


Question 27 (6 marks)

A square sheet of metal is 16cm on each side. Squares of side x cm are cut from each corner. The sheet is then bent along the dotted lines to form an open box.


(a)	Show that the volume of the box V, expressed as a function of x is given by: $V(x) = 4x(x-8)^2$	[2]
(b)	Hence find the maximum volume of the box, and the value of x at which it occurs.	[4]

Question 28 (3 marks)

The shaded region in the diagram is bounded by the circle of radius 2 centred at the origin, the parabola $y = x^2 - 3x + 2$, and the x-axis.

By considering the difference of two areas, find the area of the shaded region.

Question 29 (6 marks)

In a game a six-sided dice is rolled twice.

The difference between the two results is recorded.

(a) The following table is produced. Some of the results are missing. Complete the [1] table.

				Secor	id roll		
	_	1	2	3	4	5	6
	1	0	1	2	3		5
	2	1	0	1	2	3	
ro	3	2	1			2	3
First roll	4		2	1	0	1	
Ľ	5	4	3	2	1	0	1
	6	5	4	3	2		0

(b) A probability distribution table is drawn to summarise the results. Complete the [2] table

<u>x</u>	- I O	1	2	3	4	5
P(X =	x)		2	A subject of the subj		1 18

(c) Find the expected value, E(X), and the standard deviation σ .

[3]

	• • •				•••				•••		•••	•••	•••	•••	 			•••	• • • •		•••	•••		•••		• •
		• •		•••	•••	•••		•••	•••				• • •	•••	 •••			••			•••	•••		•••		••
	• • •	•••			•••		• • •		•••		•••			•••	 			•••	••••		•••	• • •	••••	•••	••••	••
	• • •				•••				•••		•••			•••	 			•••	••••	••••	•••	• • •		•••	• • • •	••
• • •	• • •	•••			•••	• • •			•••					•••	 			•••	• • • •	• • • •	• • •	•••	• • • •	•••	••••	••
		••			••			• • •	•••					•••	 •••		• • •	• •	• • • •		•••	• • •		• • •	• • • •	•••
		• •	•••		••			•••	•••	•••	• • •	•••	•••	•••	 	• • •		••	•••		• • •	•••		•••	• • • •	••
• • •					••				•••					•••	 			•••		• • • •		• • •		• • •	• • • •	••
• • •					••				•••			•••		•••	 		• • •	••			• • •	•••	••••	•••	• • • •	••
					••				•••		• • •			••	 • • •			•••			• • •	• • •		• • •	• • • •	
		• •			••	• • •			•••		• • •	• • •	• • •	••	 	• • •	• • •	•••	••••	•••	• • •			•••		•••
		••			•••				•••					•••	 			•••		• • • •	• • •	•••	• • • •	•••	• • • •	••
		••	• • •		•••			• • •	•••					••	 • • •		• • •	•••					• • • •	•••		•••
					•••				•••					•••	 			•••	••••	••••				•••		••
		• •	•••		•••				•••					•••	 			•••		•••				•••		••
		••	• • •		•••				•••					•••	 			•••				• • •		•••		
					••					• • •				••	 • • •		• • •	•••		• • • •	• • •			•••	· · <i>·</i> ·	••
• • •					••							• • •		••	 			•••			•••			•••		
					•••				•••					•••	 			•••		•••				• • • •		••
	•••	• •			•••				•••	•••	• • •			•••	 		• • •	•••		•••		• • •		•••		••

Question 30 (3 marks)

The sum of the series 1 + 8 + 15 + ... is 396. How many terms does the series contain?

Question 31 (2 marks)

A circular clock face, centre O, has a minute hand OA and an hour hand OB. $OA = 10 \ cm, \ OB = 7 \ cm.$

Calculate the length of AB when the hands show 5 o'clock.

Give your answer correct to 1 decimal place.

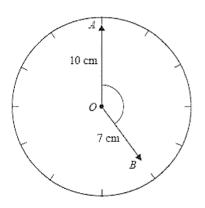


Diagram NOT accurately drawn

Question 32 (1 mark)

Evaluate ln 3 correct to three significant figures.

•	 •	•	•	•	•	• •	 	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	 	•	•	•	•	•	•	•	•	 • •	•	•	•	•	•	•	 •	•	•	•	•	 •	•	•	 •	•	•	•	• •	•	•	•	•	•	•	 • •	•	•	•	•	•
•	 •	•	•	•	•		 •		•	•		•	•	•	 •		•	•	•	•	•	•	•	•	 		•	•	•	•	•	•	•	 • •	•	•	•	•	•	•	 •		•	•	•			•	 •	•	•	•		•	•	•	•	•	•	 		•	•	•	•
•	 •	•	•	•		• •	 •		•	•	•	•	•	•		•		•	•	•	•	•	•	•	 		•			•	•	•	•	 • •	•		•	•	•	•	 •		•	•		 •	•	•		•	•	•				•	•	•	•	 		•	•	•	
	 			•			 												•	•	•			•	 									 • •					•	•	 •				•			•		•		•							•	 	•		•	•	

Question 33 (4 marks)

By considering the equation of the tangent to $y = x^2 - 1$ at the point $(a, a^2 - 1)$, find the equations of the two tangents to $y = x^2 - 1$ which pass through (3, -8).

 •	
 •	
 •••••••••••••••••	

Question 34 (6 marks)

Under certain climatic conditions the number N of blue-green algae satisfies the equation

$$N(t) = Ae^{0.15t}$$

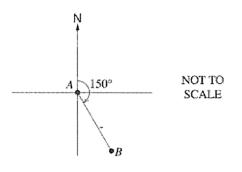
where t is measured in days and A is a constant.

(a)	Show that the number of algae increases at a rate proportional to the number.	[2]
(b)	When $t = 3$ the number of algae was estimated to be 1.7×10^8 . Evaluate A.	[2]
(c)	The number of algae doubles every x days. Find the value of x .	[2]

End of exam

Question 1 (1 mark)

The midpoint of the line joining (0, -5) to (d, 0) is


A.
$$\left(\frac{d-5}{2}, 0\right)$$
 B. $\left(0, \frac{5-d}{2}\right)$ C. $\left(\frac{d}{2}, \frac{-5}{2}\right)$ D. $\left(\frac{5+d}{2}, 0\right)$

Question 2 (1 mark)

Let f(x) and g(x) be functions such that f(2) = 5, f(3) = 4, g(2) = 5, g(3) = 2 and g(4) = 1. The value of f(g(3)) is: A. 1 B. 2 C. 4 D. 5

Question 3 (1 mark)

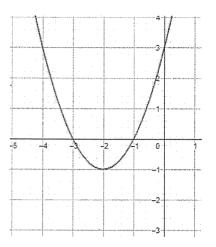
The plane flies on a bearing of 150° from A to B.

What is the bearing of A from B?A. 30° B. 150°

C. 210°

Question 4 (1 mark)

A discrete random variable X has a probability distribution as shown:


x	0	1	2	3
$\Pr(X = x)$	0.4	0.2	0,3	0.1

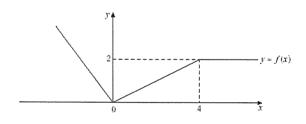
The median of X is:

A. 0 C. 1.1 D. 2

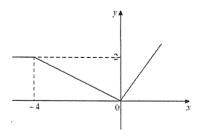
Question 5 (1 mark)

The graph of the curve $y = (x + a)^2 + b$ is shown below:

What are the values of a and b?


A. a = 2, b = 1 B. a = -2, b = -1 C. a = -2, b = 1 (D) a = 2, b = -1

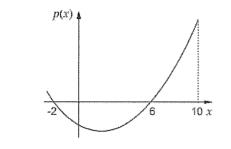
Question 6 (1 mark)


Let $a = e^x$ which expression is equal to $log_e(a^2)$? B. e^{x^2} A. e^{2x} D. x^2 C.) 2x

Question 7 (1 mark)

The graph of y = f(x) is shown below:

The graph is transformed to give this graph:

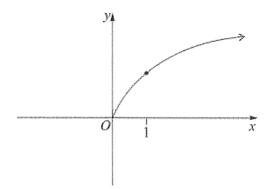


Which of these expressions is the equation of the new graph?

A.
$$f(x) - 1$$
 (B) $f(-x)$ C. $f(x) + 2$ D. $-f(x)$

Question 8 (1 mark)

The graph shows the function p(x).


If
$$\int_{-2}^{6} p(x)dx = -10$$
 and $\int_{-2}^{10} p(x)dx = 1$. What is the value of $\int_{6}^{10} P(x)dx$?
(A.) 11 B. 9 C. 10 D. 1

Question 9 (1 mark)

Which inequality defines the domain of the function $f(x) = \frac{1}{\sqrt{x+3}}$ (A.) x > -3 B. $x \ge -3$ C. x < -3 D. $x \le -3$

Question 10 (1 mark)

The graph of y = f(x) is shown:

Which of the following inequalities is correct?

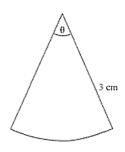
Question 11 (3 marks)
Solve $3^{2x-1} = 5^x$, giving your answer to 2 d.p.
$2\pi - 1$ π = 5
Applying In on both sides
$\ln(3^{2^{n}-1}) = \ln 5^{n}$
$(21-1)$ ln 3 = π ln 5 2π ln 3 = π ln 5
$\frac{22103}{103} - \frac{103}{100} = \frac{2105}{100}$
$\pi (2 \ln 3 - \ln 5) = \ln 3$ => $\pi = \frac{\ln 3}{2} = 1.87$ (to $a \cdot d \cdot p$)
$ = \frac{1}{2} = \frac{1}{3} = \frac{3}{2} = \frac{1}{3} = \frac$
21n3-1n5
Question 12 (3 marks)
(a) Differentiate $3 + sin2x$.
$y = 3 + \sin 2x$
$\frac{dy}{dx} = 2\cos 2x$
· · · · · · · · · · · · · · · · · · ·
······
(b) Hence, or otherwise, find $\int \frac{\cos 2x}{3 + \sin 2x} dx$
$\int \frac{Cos \cdot 2 \cdot n}{3 + Sin 2 \cdot a} dn$
$=\frac{1}{2}\int \frac{2\cos 2\pi}{3+\sin 2\pi} d\pi$
= 1 ln 13+ Sin 2x1 + C from part a

,

.

,

-


[1]

[2]

-

5

Question 13 (5 marks)

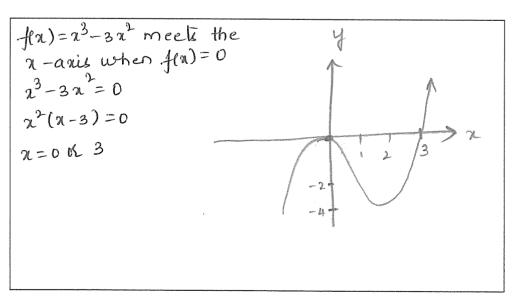
.

.

-.

(a)	.) A silver pendant is made in the form of a s	sector of a circle as shown above. If the	[2]
	radius is $3 cm$, what is the angle θ , in radia		
	Sector area = 6		
	=支X3 X日		
	~ 0- 4 ^c		
	$=7 \theta = \frac{4}{3}^{c}$		
	•••••••••••••••••••••••••••••••••••••••		1
(1)	······································		[0]
(b) Another pendant has the same total perin	neter, but with radius 2.5 cm. What is	[3]
	the required angle θ , in radians? 	$3 + (2 \times 4)$	
	= 10 c	n	
	······································		
	Hence, for the secon	d pendant	
	0 = 2.5 + 2.5 +	2:5 X.O	
	=> 0= 2	······································	
\mathbf{Questi}	ion 14 (2 marks)		
Giv	ven that $\int_{0}^{6} (x+k)dx = 30$, and k is a constant	ant, find the value of k .	
•••	$\int (2+K) dx = 30$	6k - 30 - 18	
• • •	0	Δ κ = 12	
•••	$\left(\frac{1}{2} + K \chi\right)^{6} = 30$	K - 7	
•••			
• • •	-2 1		
•••	$\left(\frac{6^2}{2}+6K\right)-\left(\frac{9^2}{2}+0\right)=30$		
	(a) / ca /		
		1	

Question 15 (7 marks)


Consider the function $f(x) = x^3 - 3x^2$

(a) Find the coordinates of the stationary points of the curve $y = f(x)$ and determine	[3]
their nature. $+(\pi) = \pi^3 - 3\pi^2$	
$f(x) = 3x^2 - 6x$	
f''(x) = 6x - 6	
Stationary points when	
$f'(x) = 0^{-5}$ $3x^{2} - 6x = 0$	
3n(x-2) = 0	
n=0 of $n=2$	
when z=0	
f(0)=0	:
f''(0) = 0 - 6	
=-6<0 marimum turning point.	
at(0,0) v	
when $x=2$	
$f(2)=2^{3}-(3\times4)=-4$	110-4
f"(2) = 6x2-6 = 670 minimum tulning point	at (77)

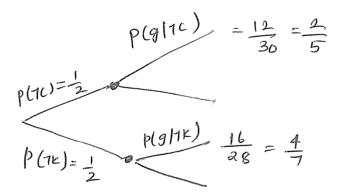
)

[2]

(b) Sketch the curve showing where it meets the axes. Label all its important features. You do not need to find points of inflexion.

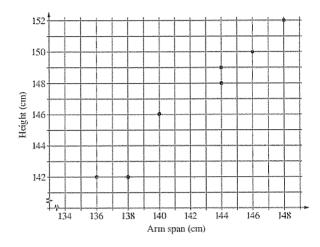
7

(c) Find the values of x for which the curve y = f(x) is concave up. +(2) is concave up when F'(x) 70 62-670 : fla) is concave up 6276 when 271 Question 16 (2 marks) Evaluate $\int_{e}^{e^{3}} \frac{5}{x} dx$ $= 5 \left[\ln \alpha \right]$ 5. 一, da e. lne 36 5 3 5 = 10 Question 17 (2 marks) Differentiate $y = x^2 log_e x$ $y = \chi^2 \log_p \chi$ using product rule $y' = x^2 - 1 + 2x \cdot \log_e x$ $= \chi + 2\chi \ln \chi$


[2]

8

Question 18 (4 marks)


Class 7C has 18 boys and 12 girls in it and 7K is made up of 12 boys and 16 girls. If you pick one of their class and a pupil from it at random, what is the probability that you select

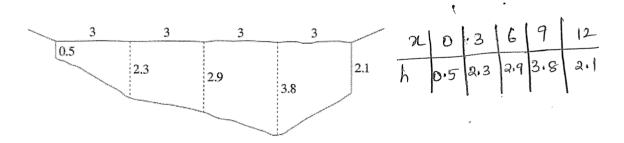
(a) a girl? $(-1) - 1 \times 2 + 1 \times 4$	[2]
(a) a girl $P(qirl) = \frac{1}{2} \times \frac{2}{5} + \frac{1}{2} \times \frac{4}{7}$	
$z \perp + 2$	••
$\frac{2}{5} + \frac{2}{7}$	•••
$= \frac{17}{35}$	••
35	
••••••	
(b) What is the probability that the student is from 7C given a girl is selected?	[2]
$p(Tc[qirl) = p(Tc \cap qirl) = \left(\frac{1}{2} \times \frac{2}{5}\right)$ $p(girl) = \left(\frac{1}{2} \times \frac{2}{5}\right)$	
P(g.ixl)	
$p(g, ixl) \qquad (11) \qquad (11) \qquad (35)$	•••
·····	•••
=	<i></i>
······/7······	•••

Question 19 (5 marks)

A set of bivariate data is collected by measuring the height and arm span of seven children. The graph shows a scatterplot of these measurements.

(a) Complete the table below.

Arm 138 140 146 148 136 144 144 Span (cm) Height 142 14-6 142 148 149 150 152 (cm)


(b)	Calculate Pearson's correlation coefficient for the data, correct to two decimal places.	[1]
	0.98(2dp)	
	۵ ۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰	
(c)	Identify the direction and the strength of the linear association between height and	[2]
	arm span. p.ositive, strong	
	p.c	
(d)	The equation of the least-squares regression line is shown.	[1]
	Height=0.866 \times (arm span)+23.7 A child has an arm span of 143 cm.	
	Calculate the predicted height for this child using the equation of the least-squares	
	regression line.	
	0.866 × 143 + 23.7	
	11-1 5200	
	= 147.538 Cm	

[1]

Question 20 (2 marks) Prove that $\frac{1 - sin^2 x cos^2 x}{sin^2 x} = cot^2 x + sin^2 x$	
L.H.S. R.HS	•
R. HS: Cotat Sina	= Costa + Sinta - Sinta costa Sinta
$= \frac{Col^2 \lambda}{Sin^2 \lambda} + Sin^2 \lambda$	
Sin'z	= 1- Sin a costa Sinta
= $Ces \chi + sin^4 \chi$	S11) A
Sinza	= L.H.S
= Costa + Sinta · Sinta Sinta	
$= \cos x + \sin x \left(1 - \cos x\right)$	
Sinta	1

Question 21 (3 marks)

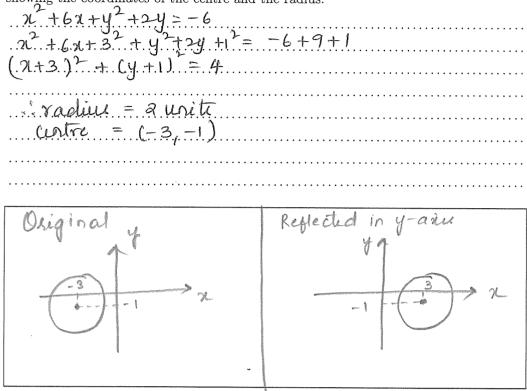
At a certain location a river is 12 metres wide. At this location the depth of the river, in metres, has been measured at 3 metre intervals. The cross-section is shown below.

Use the Trapeziodal rule with the five depth measurements to calculate the approximate area of the cross-section.

	$\frac{3}{2}$ $\int 0.5 + 2(2.3 + 1)$	-2.9+3.8) + .	2.1
\sim	3 (20.6)		•••••••••••••••••••••••••••••••••••••••
·····			
	3.0.9 m ²	••••••	• • • • • • • • • • • • • • • • • • • •
•••••••••••••••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

Question 22 (7 marks)

The velocity of a particle moving along the x-axis is given by:


 $\dot{x} = 8 - 8e^{-2t}$

where t is the time in seconds and x is the displacement in metres.

(a) Show that the particle is initially at rest.	[1]
$n = 8 - 8e^{-2t}$	[-]
Sub t=0	
$\dot{\lambda} = 8 - 8e^{-2(0)}$	
$\dot{\alpha} = 0 - 0$	
Darticles in Faller at creet	
in pasticle initially at rest	
(b) Show that the acceleration of the particle is always positive. $-2t$	[1]
$\chi = 16e^{-t}$	
AS e 70, for all values of t, then x is always positive	
ie always positive	
• •	
(c) Explain why the particle is moving in the positive direction for all $t > 0$.	[2]
Since partice is initially at rest (from a)	
and aways a printie acceleration	
Since particle is initially at rest (from a) and always a positive acceleration is applied (from b) for all tro	
The positive direction	
the positive direction.	
(d) As $t \to \infty$, the velocity of the particle approaches a constant. Find the value of	[-1
the constant.	[1]
$\ddot{\chi} = R - R P^{-21}$	
As $t \rightarrow 0$ $e^{-2t} \rightarrow 0$	
$\gamma \rightarrow \phi$ τ (optiont in ϕ	
n. 7.8. The constant is 8.	
(e) Sketch the graph of the particle's velocity as a function of time.	[2]
n - anymptoli	
$\frac{2}{2} = 8 - 8e^{-2t}$	
0 t	

Question 23 (4 marks)

The circle $x^2 + 6x + y^2 + 2y = -6$ is reflected in the y-axis. Sketch the reflected circle, showing the coordinates of the centre and the radius.

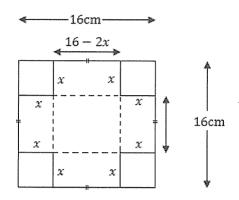
Question 24 (2 marks)

A town planning committee notes that the rate of growth of the town's population since 1985 has followed the formula: $\frac{dp}{dt} = (1500 + 200t)$ people per year where t is the number of years since 1st January 1985. On 1st January 1992 the population was 25 000. Find the formula for the city's population from 1985 onwards.

 $population = \int (1500 + 200f) df$ $= 1500t + 200t^2 + K$ $= 1500t + 100t^{2} + K$ when t=7, p=25000, putting this information into the formula gived 25000 = 10500 + 4900 + K=7 K = 9600population = 1002 + 1500t + 9600

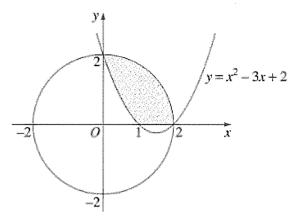
Question 25 (4 marks)
Solve $10\sin^2 x - 4\sin x = 5$ for $0^o \le x \le 360^o$.
$10 \sin^{2} \pi - 4 \sin \pi - 5 = 0$
ming Quadratic formula
$\sin x = 4 \pm \sqrt{a16}$
20
Charles and there a shart
Sina 2 0.93485 K2 -0.534847
$\gamma = 69.2^{\circ}, 10.8^{\circ}$ Dr 212.3° 327.7°
212.3, 327.7
Question 26 (4 marks)

(a) Differentiate $log_e(cos x)$ with respect to x.
$y = \log_e(\cos x)$
$\frac{dy}{dx} = -\frac{Sinn}{\cos x}$
$= - \tan \lambda$
π
(b) Hence, or otherwise, evaluate $\int_0^{\overline{4}} \tan x dx$
$\int \frac{d}{dt} = - \left[\log \cos x \right]^{-4}$
$= - \left[\log \cos \frac{\pi}{4} - \log \cos \frac{\pi}{2} \right]$
$= - \left[\log \left[\frac{1}{\sqrt{2}} \right] - \log \left[\frac{1}{\sqrt{2}} \right] \right]$
·····
$= -\log \frac{1}{\sqrt{2}} \simeq 0.35$ (2.d.p.)


(4 marks)

[2]

[2]


Question 27 (6 marks)

A square sheet of metal is 16cm on each side. Squares of side x cm are cut from each corner. The sheet is then bent along the dotted lines to form an open box.

(a) Show that the volume of the box V, expressed as a function of x is given by: [2] $V(x) = 4x(x-8)^2$ $length = 16 - 2\pi$; bread th = $16 - 2\pi$; height = π $V(x) = x(2(8-x)^2)$ (b) Hence find the maximum volume of the box, and the value of x at which it occurs. [4] $V(x) = 4x(8-x)^{2}$ when 2=-. v'(x) = 4(x-8) + 8x(x-8) $V^{\prime\prime\prime}\left(\frac{6}{3}\right) = 24\left(\frac{6}{3}\right)$ (2-8)+22V'(n) = 4(n - 1)manimum turning V'(n) = 4(n-8)(3n-8)Finding stationary points sub v(x) = D The maximum volume ben $x = \frac{g}{3}$ is $\left(\frac{g}{3} - 8\right)^2$ ····· 4(x-8)(3x-8)=0uspen n = & is 1=8', n= & $V\left(\frac{6}{3}\right) = 4 \times \frac{6}{3}$ = 242-128 when x = 8 = 330 $\frac{11}{27}$ cm³ 11(8)=24(8)-128 D minimum turing 15

Question 28 (3 marks)

The shaded region in the diagram is bounded by the circle of radius 2 centred at the origin, the parabola $y = x^2 - 3x + 2$, and the x-axis.

By considering the difference of two areas, find the area of the shaded region. Shaded area = area in the Quarter circle less the area below the parabola between a=0 & 1 Area of $\frac{1}{4}$ circle = $\frac{1}{4}\pi\gamma^2$ ······ = T SQ UN Asea of the parabola between x=0 $\xi x=1$ -37+2) dr : Shaded area = $\left(\overline{\Lambda} - \frac{5}{6}\right) u^2$ 16

Question 29 (6 marks)

In a game a six-sided dice is rolled twice.

The difference between the two results is recorded.

(a) The following table is produced. Some of the results are missing. Complete the [1] table.

			Second roll				
		1	2	3	4	5	6
	1	0	1	2	3	4	5
	2	1	0	1	2	3	4
ro	3	2	1	D	-	2	3
First roll	4	3	2	1	0	1	2
	5	4	3	2	1	0	1
	6	-5	4	3	2	1	0

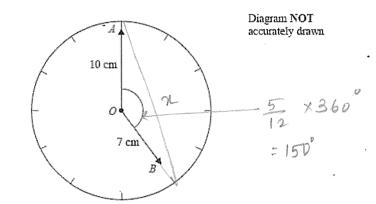
(b) A probability distribution table is drawn to summarise the results. Complete the [2] table

<u> </u>	0	1	2	3	4	5	
P(X=x)	16	5 18	$\frac{2}{9}$	16	49	$\frac{1}{18}$	and well an and the state of The

(c) Find the expected value, E(X), and the standard deviation σ . E(X) = 0, $\left(\frac{1}{6}\right)$, ± 1 , $\left(\frac{5}{18}\right)$, ± 2 , $\left(\frac{2}{9}\right)$, ± 3 , $\left(\frac{1}{6}\right)$ [3] $(+, 4, (-\frac{1}{9}), + 5, (-\frac{1}{18}))$ $= \frac{35}{10} = 1\frac{17}{18}$ $Var(x) = E(x^{L}) - M^{2}$ $\mathcal{L} = (X^{2}) = D^{2} \left(\frac{1}{6}\right) + J^{2} \left(\frac{5}{18}\right) + 2^{2} \left(\frac{7}{9}\right) + 3^{2} \left(\frac{1}{6}\right) + 4^{2} \left(\frac{7}{9}\right) + 5^{2} \left(\frac{1}{18}\right)$ = 5-6 As $F(x) = M = 1\frac{17}{18}$ Hiers $M = 3\frac{25\cdot3}{32\cdot4}$ $= 5\frac{5}{6} - 3\frac{253}{324}$ = 2.0524 ~ = 1.43 (2d.p) 17

Question 30 (3 marks)

The sum of the series 1 + 8 + 15 + ... is 396. How many terms does the series contain? This is an arithmetic sequence with first term 1 and common diffuence 7 ben. et the number of terms in the sequence X n = 396 (2+7(n-1)). 7. n=11.... n Since - 72 792 = Tn. 50-7 The number of terms all. (n-11)=0.]n+72)


Question 31 (2 marks)

A circular clock face, centre O, has a minute hand OA and an hour hand OB.

 $OA = 10 \ cm, \ OB = 7 \ cm.$

Calculate the length of AB when the hands show 5 o'clock.

Give your answer correct to 1 decimal place.

Using cosine rule
Using cosine rule $n^2 = 10^2 + 7^2 - 2 \times 10^3 7 \times 10^2 150^{\circ}$
$\pi^2 = 270.243$
$n = \sqrt{270.243}$
λ≥ 16.439
2~ 16.4.Cm (3 Sig fig; correct to 1.d.p)

Question 32 (1 mark)
Evaluate $ln 3$ correct to three significant figures.
1n3 = 1.10 (3 Sig fig)
Question 33 (4 marks) By considering the equation of the tangent to $y = x^2 - 1$ at the point $(a, a^2 - 1)$, find the equations of the two tangents to $y = x^2 - 1$ which pass through $(3, -8)$. $y = x^2 - 1$
y = a x
At 2= \$2 ; y'=20
EQuation of the line with gradient 2a, through (a, a'-1)
$y - (a^2 - 1) = 2a(a - a)$
$y - a^{2} + 1 = 2ax - 2a^{2}$ $y = 2ax - a^{2} - 1$
If the tangent passes through (3,-8)
$2a(3) - a^{2} - 1 = -8$ $6a - a^{2} - 1 = -8$ $a^{2} - 6a - 7 = 0$
(a-7)(a+1)=0
=7a=7 or $a=-1$
.: Equatione of tangente are
y = 14a - 50
y = -2x - 2

-

Question 34 (6 marks)

Under certain climatic conditions the number ${\cal N}$ of blue-green algae satisfies the equation

$$N(t) = Ae^{0.15t}$$

where t is measured in days and A is a constant.

(a) Show that the number of algae increases at a $N(E) = Ae^{0.15 E}$	rate proportional to the number.	[2]
$N'(t) = 0.15 Ae^{0.15t}$		
= 0.15 N(F)		
(b) When $t = 3$ the number of algae was estimated $1.7 \times 10^8 = Ae^{0.15}(3)$	d to be $1.7 imes 10^8$. Evaluate A.	[2]
$1.7 \times 10^8 = A e^{0.45}$	•••••••••••••••••••••••••••••••••••••••	
$A = \frac{1.7 \times 10^8}{e^{0.45}}$	······································	
$= 1.0839 \times 10^{8}$ $= 1.1 \times 10^{6} (2 \text{ Sig})$	-f.g.)	
(c) The number of algae doubles every x days. Fin Now N(o) = A $e^{0.15(0)}$	$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	[2]
= A	$\chi = \frac{\ln 2}{0.15}$	
$\therefore N(x) = 2A$	= 4:6209	
$Ae^{0.152} = 2A$	= 4.6 days	
0.15 x = 1n2 End of ex		
End of ea	sam sam	

20